Q.P. Code: 20EC0402]	R20								
	F	Reg. No:					MP.]			
		SIDDH	IART	'H INS	TITI	TEO	FFN	CINE	FRIN	G &	TECI	INOL	OGV.	PUTTU	R	
		21 800				IL U	(AU	TON	OMOL	JS)	ILCI	mul		TUTTU		
		B.Tech II	Yea	r I Ser	neste	r Reg	Jular	& Sup	plem	nenta	ry Ex	amin	ations	March-2	2023	
					ELEC	TRO	NICI	DEVIC	CES A	ND	CIRC	UITS				
	т	ima: 3 hours			(Elect	ronics	and C	Comm	unicati	ion Ei	nginee	ring)		Mox N	Iontras (0
		inite. 5 nours			,		and a		proor	10		101.0	tion-O s	Iviax. Iv	Tarks: 0	0
					(.	Answ	er all .	Five L	nits 5	x 12	= 60	Marks)			
								U	JNIT-	9						
1	a	Analyze the	curr	ent co	mpon	ents c	of a Pl	N Jun	ction	Diod	e and	der	rive the	CO2	L4	6M
		diode current equation.														
	b	A PN juncti	on ge	rmani	um die	ode ha	as a re	verse	satura	ition	currei	nt of 1	0 μA at	CO2	L3	6M
		the room te	mper	ature	of 270	C. It	is obs	served	to be	e 30µ	A, wh	nen th	e room			
		temperature	is in	creased	l. Calc	ulate	the ne	ew roc	om ter	npera	ture.					
-					1 01			in the transmission	OR							
2	a	Define Zene	er Di	ode ar	nd Sho	ow that.	at the	Zene	er Dic	de ca	an act	as a	voltage	CO4	L2	6M
	L	regulator wi	th a r	ieat cii	rcuit d	lagran	n.	0.5		D' 1	1			000	10	0.0
	D	Sketch and e	expla	in the	V-1 CI	naract	eristic	cs of Z	lener	Diod	e and	men	ition its	CO3	L3	6M
	application.															
3	a	Classify and	Expl	ain di	fferent	type	s of L	CD ba	ased o	n co	nstruc	tion.	List the	CO1	L2	6M
		advantages a	ind ap	plicat	ions of	LCD										
	b	Explain the	const	ruction	n, wor	king a	nd ap	plicat	ions o	f Sola	r Cell	•		CO3	L2	6M
		-						-	OR							
4	a	Demonstrate	e the	worki	ng prir	nciple	of LC	filter	with	neat	circuit	t diagr	am and	CO3	L4	6M
		derive the	expi	ression	for	its r	ipple	facto	or. Li	st it	s adv	vantag	es and			
		disadvantage	es.													
	b	Draw the cir	cuit	symbo	l of UJ	T and	l its cł	naract	eristic	s wit	h neat	t diagr	am and	CO1	L1	6M
		list its applic	ation	s.												
								U	NIT-I	II						
5	a	Explain the o	const	ruction	n of NI	PN tra	nsisto	or with	ı a ne	at dia	gram.			CO1	L2	6M
	b	If the base co	urren	t in a	transis	tor is	20μΑ	when	the e	mitte	r curr	ent is	6.4mA,	CO2	L2	6M
		what are the	valu	es of a	and β	? Also	calcu	ılate tl	ne col	lector	curre	ent.			-	
									OR							
6	a	Explain the diagram.	oper	ation	of N-C	Chann	el de	pletio	n typ	e MC	OSFET	' with	a neat	CO3	L2	6M
	Ь	Compare the	e perf	orman	ce of I	FET v	vith N	IOSFI	ET.					CO1	L1	6M
			-													

(2.P. Code: 20EC0402	R20		
	UNIT-IV			
a	Define Transistor biasing Derive the expression for Stability Factor, Sf. from	CO3	L4	6M
	Collector current equation.			
b	Explain the concept of DC and AC Load lines and discuss the criteria for	CO3	· L2	6M
	fixing the Q-point.			

OR

8 a Define and Explain Thermal Runaway and Thermal Resistance.CO2L26Mb Determine the Q-point for the circuit shown in the Figure.CO6L36M

7

UNIT-V

9	a	With neat diagram, summarize the parameters of CE amplifier using approximate analysis.	CO5	L2	6M
	Ь	Examine the expressions for current gain, voltage gain, input hybrid model. OR	CO5	L2	6M
10 a	a	Draw the circuit diagram of JFET Common Source amplifier with	CO5	L3	6M
		voltage divider bias for bypassed Rs and determine the expression for			
		input impedance, output impedance and voltage gain.			
	b	Summarize the expressions for input impedance, output impedance and	CO5	L2	6M
		voltage gain of IFFT Common Drain amplifier with neat diagram			

*** END ***